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A �nite size scaling method is proposed in which the branch-points of the

largest transfer matrix eigen-value are used to calculate thermal and mag-

netic exponents. The e�ect of di�erent boundary conditions is considered

and the method is tested for the q-state Potts model.
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1 Introduction

According to the Lee-Yang circle theorem [1], the zeros of the partition func-
tion of the ferromagnetic Ising model, in the complex plane C

H
of the variable

z
H
= exp(�2H=kbT ), lie on the circle jz

H
j = 1. This result has been shown

to apply to a larger class of models [2{5] but this does not include the q > 2
Potts model for which the circle theorem does not hold [6,7]. The distribution

of zeros of the partition function in the complex pair-interaction plane C
T
of

the variable z
T
= exp(�2J=kbT ) has also been investigated [8,9]. For the zero-

�eld square-lattice Ising model the asymptotic locus of zeros is given by the
Fisher circles [8,10]

z
T
=
p
2 exp(i#)� 1: (1)

These circles are a result of the self-duality and spin-inversion symmetry of

the Ising model. The duality (but not spin-inversion) generalizes to the q-state

Potts model [11] which has a self-dual (Potts) circle

z
T
=
p
q exp(i#) + 1: (2)
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A theory of �nite size scaling of partition function zeros was developed by

Itzykson et al. [12]. For a system of lengthM in each dimension they proposed

the scaling forms

jz�
T
� z

c
T
j �M

�yT; jz�
H
� z

c
H
j � M

�yH ; (3)

for the zero z
�

T
closest to the critical value zc

T
in C

T
and the zero z

�

H
closest to

the critical value zc
H
in C

H
. This approach was extended by Glasser et al. [13],

who obtained an explicit asymptotic form valid for an unbounded number of
zeros. Monte Carlo calculations using (3) have been carried out by Marinari

[14] and Kenna and Lang [15] and the method has been applied to a model
with a wetting transition by Smith [16].

For the square-lattice Ising model on a semi-in�nite lattice Wood [17] showed

that the Fisher circles (1) could be computed as curves on which transfer ma-

trix eigen-values were degenerate in modulus and thus that these latter yield

the asymptotic locus of partition function zeros. Further investigations [18{22]
have now established the salient elements of this relationship for di�erent lat-
tice systems (see section 2). In this letter we combine these ideas with the �nite

size scaling approach of Itzykson et al. to propose a scaling ansatz for semi-

in�nite systems, using the branch-points of the transfer matrix eigen-values.

The method is tested by calculating the thermal and magnetic exponents y
T

and y
H
of the q-state two-dimensional Potts model.

2 Transfer matrix eigen-values

Let the lattice be a cylinder of N rings of M sites. If each site contains a

q-state microsystem and interactions occur only between microsystems in the

same or neighbouring rings, the partition function has the form

Z(N;M ; z) =
mX

i=1

ai(M ; z)f�i(M ; z)gN�1; (4)

where m = q
M and �i, i = 1; 2; : : : ; m are the eigen-values of the transfer

matrix V, labelled in order of decreasing magnitude at some arbitrarily cho-

sen point of the positive real axis R
(+) of C . Here z 2 C represents either

z
T
2 C

T
or z

H
2 C

H
, with the other variable kept constant. The coe�cients

ai(M ; z) = [xiB]:yi are given in terms of the left and right eigen-vectors fxig
and fyig of V with the matrix B containing contributions from the ends of

the cylinder. On R
(+) �1(M ; z) is real, positive and non-degenerate with real,

positive eigen-vectors [23]. Thus, on R
(+), a1(M; z) 6= 0. Formula (4) has spe-

cial cases corresponding to di�erent boundary conditions. If B = V, then
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ai = �i, giving the usual formula for toroidal boundary conditions. When

the lattice has lines of boundary sites at both ends B = [b(r)](t) 
 b
(l) and

ai = [xi:b
(r)][yi:b

(l)]. It is not di�cult to show that, if either one or both of the
boundary vectors b

(r) and b
(l) is invariant under the symmetry group of the

transfer matrix, then ai � 0 unless �i belongs to the one-dimensional symmet-

ric representation A1 of the group. Thus, under these conditions, the summa-

tion in (4) is con�ned to the set i 2 A1. The coe�cients and eigen-values can

then be obtained by solving the eigen problem for the one-dimensional sym-

metric block V1 of V. Such a situation occurs in the case of free boundary
conditions at the ends of the cylinder.

For any two eigen-values we de�ne the spectral gap function by

gij(M ; z) = ln f�i(M ; z)=�j(M ; z)g : (5)

Since �1(M ; z) is non-degenerate on R
(+), none of the functions g1j(M ; z),

j = 2; 3; : : : ; m has a zero on R
(+). In the case of the Ising model, however, the

�rst-order transition, which exists in the limit M ! 1, for H = 0, T < Tc

is, for �nite M , a line of closest approach (`avoided crossings') of the two
largest eigen-values �1(M ; z) and �2(M ; z) along a path at constant T as
H passes through zero [24]. Thus g12(M ; z) drops to a minimum at H = 0

on that path. This property is not exhibited by the functions g1j(M ; z), for
j > 2. In a similar way on the zero-�eld axis, as T is decreased through Tc,

g12(M ; z) descends to a minimum and remains near that value in contrast to
the behaviour of the functions g1j(M ; z), for j > 2, which have minima along

R
(+) near T = Tc, but do not exhibit the 
attened e�ect for T < Tc. Since

�2(M ; z) is not in A1 [25], the model with free boundary conditions will, for
�nite M , exhibit evidence of the critical point of the M !1 model but not
of the �rst-order transition. The importance of the role played by the second

largest eigen value in the �nite size scaling analysis of �rst-order transitions
has been discussed in more detail by Privman and Fisher [24,26].

Let Cij(M) be the curve in C along which gij(M ; z) is purely imaginary. Those

Cij(M) de�ned by eigen-values in the same and di�erent transfer matrix sym-
metry blocks will be termed connection and cross-block curves respectively [20].

In some cases the two eigen-values de�ning a connection curve are branches

of a single (irreducible) algebraic function, although this is not always so.
In the case of the square lattice Ising model it follows from Kaufman's work

[25] that the eigen-values of the one-dimensional symmetric representation are
branches of a number of di�erent algebraic functions. LetM(M) be that subset

of fCij(M)g for which the eigen-values �i(M ; z) and �j(M ; z) are of maximum

magnitude among those for which ai(M ; z) and aj(M ; z) 6� 0. Then, for all
z =2 M(M), there is a unique eigen-value among those with coe�cients not
identically zero which has maximum magnitude. This eigen-value is denoted

by �Max(M; z), with corresponding coe�cient aMax(M ; z). On the positive
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real axis �Max(M; z) is �1(M ; z). It is not di�cult to show that the zeros of

Z(N;M ; z), in the limitN !1, converge onto the closed set M(M) and onto

the isolated zeros of aMax(M ; z). Both M(M) and these isolated zeros depend
on the choice of boundary conditions. The part of M(M) �rst encountered

by any continuous path from R
(+) will be C1k(M) for some k. This will be a

connection curve or a cross-block curve according to whether k 2 A1 or not.

For the Ising model [20,25] C12(M) is a cross-block curve (2 62 A1) and our

calculations indicate that this is also the case for the 3-state Potts model with

M in the range of our results (see table 1). As we have indicated above cross-
block curves can be eliminated fromM(M) by a choice of boundary conditions

which make ak(M ; z) � 0 if k 62 A1.

3 The �nite size scaling ansatz

Given that boundary conditions ensure that M(M) involves only eigen-values
in A1, the points of this set closest to R

(+) will be branch-points of �1(M ; z), oc-

curring in conjugate pairs. They correspond to bounds on the asymptotic dis-

tribution of partition function zeros. We denote the conjugate pair of branch-
points closest to zc

T
in C

T
by z?

T
and �z?

T
, with similar notation in C

H
, and propose

the modi�ed forms

jz?
T
� z

c
T
j �M

�yT; jz?
H
� z

c
H
j � M

�yH ; (6)

of the �nite size scaling formulae of Itzykson et al. [12], for the calculation of
y
T
and y

H
. Support for this method is given by the behaviour of the rounding

exponent �. The quantity M�� is of the order of the size of the neighbourhood

in which the correlation length exceeds the lattice width [28]. This should be
of the same order as the radius of convergence of a power series expansion of

the free energy about the critical point, which will be given by the location of
the nearest branch-point of �1(M ; z

T
). The equality � = y

T
is thought to be

satis�ed in a wide class of systems, particularly in the case of a cylinder with

free boundary conditions at the ends [29].

4 Results

For the zero-�eld Ising model (q = 2) the location of the nearest branch-points
have been obtained exactly [21]. In terms of the angle variable # of the Fisher

circles (1) they are located at # = �#b(M), where, in the limit of large M ,

#b(M) � 1=M , giving, from the �rst of equations (6), the correct result y
T
= 1.
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Table 1

Estimates for yT and yH using the �nite size scaling formulae (6). The exact values

are given for yT by den Nijs [31] and Black and Emery [32] and for yH by Neinhuis

et al. [33] and Pearson [34].

y
T

y
H

M q = 2 q = 3 q = 4 q = 2 q = 3 q = 4

4 0.984382 1.186760 1.343198 1.96737 1.99611 2.06940

5 0.990986 1.190734 1.350089 1.93182 1.95150 2.00144

6 0.994105 1.192738 1.355016 1.91044 1.92423 1.96199

7 0.995834 1.194065 1.359108 1.89869 1.90877 1.93959

8 0.996897 1.195037 1.362600 1.89196 1.89954 1.92603

9 0.997597 1.195775 1.365598 1.88781 1.89357

10 0.998084 1.196350 1.368194

11 0.998436 1.196807 1.370464

� � �

17 1.87829

Exact 1 1:2 1:5 1:875 1:8_6 1:875

In general, for the zero-�eld Potts model in C
T
, duality in the form

�i(M ;
p
q� + 1) = �

2M�i(M ;
p
q�

�1 + 1); (7)

for all complex �, applies to all the eigen-values in A1 [27]. Using this result,

it can be shown [21] that on the Potts circle (2), given by � = exp(i#), these

eigen-values have the form

�i(M ;
p
q exp(i#) + 1) = R(#) expfi[M#� !(#)]g: (8)

When !(#) is real (8) gives a pair of eigen-values de�ning a connection curve

on the Potts circle, with branch-points located at the solutions of !(#) = 0.

For �1(M ; z
T
) it must be the case that !(0) = 0 and the nearest branch-

points z?
T
and �z?

T
to z

c
T
can be determined by following the Potts circle from

the real axis until the imaginary part of ln
n
�1(M ;

p
q exp(i#) + 1)

o
di�ers

fromM#. Numerical computations are simpli�ed by using the transfer matrix

V(wp) of the simple Whitney polynomial representation of the Potts model
[30]. For a given lattice width, V(wp) has elements continuously parameter-
ized by q, but a size independent of q. On the real axis V(wp) has the same

largest eigenvalue �1(M ; z
T
) as V. So the characteristic equation of V(wp) con-
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tains the whole of the algebraic function of which �1(M ; z
T
) is a branch. This

means that V(wp) gives the correct branch-points for �1(M ; z
T
). The domi-

nant eigenvalues were calculated using a variant of the power method with
initial vector (1; 1; : : : ; 1). This restricts the iteration to eigen-values in the

A1 block of V(wp). The branch-points of �1(M ; z
T
) on the Potts circle were

located by �nding the point where !(#) of formula (8) becomes non-zero. The

amplitude of the leading asymptotic term in jz?
T
� z

c
T
j was eliminated between

the expressions for M and M � 1. Results for y
T
are given in table 1.

The calculations for y
T
, were carried out with z

H
= z

c
H
= 1. The corresponding

computations for y
H
were performed with z

T
= z

c
T
=
p
q+1. In the C

H
plane, for

general q, the only exact information is the location zc
H
= 1 of the critical point.

For q = 2 the branch-points are on the circle jz
H
j = 1 and, above the critical

temperature, in the limit M ! 1 they give the Yang-Lee edge singularities

[35]. As may be expected, for general q, the structure of the connection curve

for �1(M ; z
H
) is a�ected by whether the �eld is coupled with one or more

states. Results for M = 1 [36] show that, with a �eld coupled to one state,

the zeros lie on a circle whose radius depends on q and z
T
. For M > 1 the

connection curve is a single smooth arc which, according to our calculations,

approaches the unit circle for increasingM . The eigen-values in this case were
obtained for q = 2 and q = 3 using V and for q = 4 using the extended

Whitney polynomial method [30]. The method is similar to that for y
T
. The

estimates for y
H
are given in table 1.

5 Conclusions

The results of this method show convincing convergence towards the exact

values for q = 2 and q = 3. Using both �nite and M �1 lattices Bl�ote and
Nightingale [30] obtained �nite size scaling estimates for y

T
from three-point

�ts to the critical heat capacity. These gave `best estimates' of y
T
= 1, 1.1955,

1.3934 for q = 2; 3; 4 respectively. While our results and those of Bl�ote and
Nightingale are comparably close to the exact results for q = 2 and 3, they

show a similar di�erence for q = 4. In their method this is due to an additional

term in the leading singular behaviour of the heat capacity at q = 4. For
q > 4 the transition is �rst-order. Bl�ote and Nightingale obtain the power

law behaviour described by discontinuity �xed point exponents for completely

�nite systems, but for semi-in�nite systems exponential divergence occurs. We

have obtained similar results.

In the case of y
H
the quality of our results are again similar to those of Bl�ote

and Nightingale. However, the main aim of our work is not to produce more
accurate values for critical exponents. In the case of the Potts model the exact

values are already known. Our motive is to explore the hypotheses that eigen-
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value branch-points have a �nite size scaling relationship to the temperature

and �eld exponents. These branch-points are those of the eigen-value of the

one-dimensional symmetric block which is largest on the positive real axis. We
have, therefore, a particularly simple procedure for obtaining approximations

to critical exponents. The method has also been applied to the quasi-Potts

model of Young and Lavis [37] with encouraging results. In that case no exact

information is available and comparison with other approximation methods is

necessary. This work will be reported in a later communication.
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