Finite size scaling of branch-points in lattice models
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A finite size scaling method is proposed in which the branch-points of the
largest transfer matrix eigen-value are used to calculate thermal and mag-
netic exponents. The effect of different boundary conditions is considered
and the method is tested for the g-state Potts model.
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1 Introduction

According to the Lee-Yang circle theorem [1], the zeros of the partition func-
tion of the ferromagnetic Ising model, in the complex plane C,, of the variable
2y = exp(—2H/ksT), lie on the circle |z,| = 1. This result has been shown
to apply to a larger class of models [2-5] but this does not include the ¢ > 2
Potts model for which the circle theorem does not hold [6,7]. The distribution
of zeros of the partition function in the complex pair-interaction plane C, of
the variable z, = exp(—2.J/ksT) has also been investigated [8,9]. For the zero-
field square-lattice Ising model the asymptotic locus of zeros is given by the
Fisher circles [8,10]

zp = V2exp(iv)) + 1. (1)
These circles are a result of the self-duality and spin-inversion symmetry of

the Ising model. The duality (but not spin-inversion) generalizes to the g-state
Potts model [11] which has a self-dual (Potts) circle

2, = /qexp(iv) + 1. (2)
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A theory of finite size scaling of partition function zeros was developed by
Itzykson et al. [12]. For a system of length M in each dimension they proposed
the scaling forms

|Z; - Z§| ~ M_yTa |ZSI - ZEI| ~ M_yHa (3)

for the zero 22 closest to the critical value 2¢ in C, and the zero z¢ closest to
the critical value z¢ in C,. This approach was extended by Glasser et al. [13],
who obtained an explicit asymptotic form valid for an unbounded number of
zeros. Monte Carlo calculations using (3) have been carried out by Marinari
[14] and Kenna and Lang [15] and the method has been applied to a model
with a wetting transition by Smith [16].

For the square-lattice Ising model on a semi-infinite lattice Wood [17] showed
that the Fisher circles (1) could be computed as curves on which transfer ma-
trix eigen-values were degenerate in modulus and thus that these latter yield
the asymptotic locus of partition function zeros. Further investigations [18-22]
have now established the salient elements of this relationship for different lat-
tice systems (see section 2). In this letter we combine these ideas with the finite
size scaling approach of Itzykson et al. to propose a scaling ansatz for semi-
infinite systems, using the branch-points of the transfer matrix eigen-values.
The method is tested by calculating the thermal and magnetic exponents ..
and y, of the g-state two-dimensional Potts model.

2 Transfer matrix eigen-values

Let the lattice be a cylinder of N rings of M sites. If each site contains a
g-state microsystem and interactions occur only between microsystems in the
same or neighbouring rings, the partition function has the form

Z(N, M; z) ial M; 2){As(M; 2) 3 (4)

where m = ¢™ and A;, © = 1,2,...,m are the eigen-values of the transfer
matrix V, labelled in order of decreasing magnitude at some arbitrarily cho-
sen point of the positive real axis R(Y) of C. Here z € C represents either
zZ, € C, or z, € C,, with the other variable kept constant. The coefficients
a;(M;z) = [2;B].y; are given in terms of the left and right eigen-vectors {z;}
and {y;} of V with the matrix B containing contributions from the ends of
the cylinder. On R(Y) A, (M; 2) is real, positive and non-degenerate with real,
positive eigen-vectors [23]. Thus, on ]R( ), a;(M, z) # 0. Formula (4) has spe-
cial cases corresponding to different boundary conditions. If B = V, then



a; = N;, giving the usual formula for toroidal boundary conditions. When
the lattice has lines of boundary sites at both ends B = [6(™](") @ b(*) and
a; = [@;.b™][y;.6M]. Tt is not difficult to show that, if either one or both of the
boundary vectors b®) and 5" is invariant under the symmetry group of the
transfer matrix, then a; = 0 unless A; belongs to the one-dimensional symmet-
ric representation A; of the group. Thus, under these conditions, the summa-
tion in (4) is confined to the set i € A;. The coefficients and eigen-values can
then be obtained by solving the eigen problem for the one-dimensional sym-
metric block Vi of V. Such a situation occurs in the case of free boundary
conditions at the ends of the cylinder.

For any two eigen-values we define the spectral gap function by

9i5(M; 2) = In {Ai(M; 2) /A (M; 2) } - (5)

Since Aj(M;2) is non-degenerate on R™), none of the functions g;;(M;2),
j=2,3,...,m has a zero on R, In the case of the Ising model, however, the
first-order transition, which exists in the limit M — oo, for H =0, T < T,
is, for finite M, a line of closest approach (‘avoided crossings’) of the two
largest eigen-values A;(M;z) and Ay(M;z) along a path at constant T as
‘H passes through zero [24]. Thus g12(M; z) drops to a minimum at H = 0
on that path. This property is not exhibited by the functions g,;(M; z), for
j > 2. In a similar way on the zero-field axis, as T is decreased through T¢,
g12(M; z) descends to a minimum and remains near that value in contrast to
the behaviour of the functions g¢y;(M; z), for j > 2, which have minima along
R(Y) near T = T, but do not exhibit the flattened effect for T < T.. Since
Ay(M; z) is not in A; [25], the model with free boundary conditions will, for
finite M, exhibit evidence of the critical point of the M — oo model but not
of the first-order transition. The importance of the role played by the second
largest eigen value in the finite size scaling analysis of first-order transitions
has been discussed in more detail by Privman and Fisher [24,26].

Let C;;(M) be the curve in C along which g;;(M; z) is purely imaginary. Those
Cij(M) defined by eigen-values in the same and different transfer matrix sym-
metry blocks will be termed connection and cross-block curves respectively [20].
In some cases the two eigen-values defining a connection curve are branches
of a single (irreducible) algebraic function, although this is not always so.
In the case of the square lattice Ising model it follows from Kaufman’s work
[25] that the eigen-values of the one-dimensional symmetric representation are
branches of a number of different algebraic functions. Let 9t(M) be that subset
of {C;;(M)} for which the eigen-values A;(M; z) and A;(M; z) are of maximum
magnitude among those for which a;(M;z) and a;(M;z) # 0. Then, for all
z ¢ M(M), there is a unique eigen-value among those with coefficients not
identically zero which has maximum magnitude. This eigen-value is denoted
by Amax(M, 2), with corresponding coefficient ayax(M;2). On the positive



real axis Ay (M, z) is Ay (M; z). It is not difficult to show that the zeros of
Z(N, M;z), in the limit N — oo, converge onto the closed set 9(M) and onto
the isolated zeros of ayax(M; 2). Both (M) and these isolated zeros depend
on the choice of boundary conditions. The part of M(M) first encountered
by any continuous path from R™*) will be Cyj,(M) for some k. This will be a
connection curve or a cross-block curve according to whether £ € A; or not.
For the Ising model [20,25] Ci5(M) is a cross-block curve (2 ¢ A;) and our
calculations indicate that this is also the case for the 3-state Potts model with
M in the range of our results (see table 1). As we have indicated above cross-
block curves can be eliminated from :t(M) by a choice of boundary conditions
which make a,(M;z) =0if k & A;.

3 The finite size scaling ansatz

Given that boundary conditions ensure that 9t(M) involves only eigen-values
in Ay, the points of this set closest to R will be branch-points of A;(M; z), oc-
curring in conjugate pairs. They correspond to bounds on the asymptotic dis-
tribution of partition function zeros. We denote the conjugate pair of branch-
points closest to z¢ in C, by 2% and zZ, with similar notation in C,, and propose
the modified forms

|Z;_Z§| ~ M_yTa |Z:1_Z§1| ~ M_yHa (6)

of the finite size scaling formulae of Itzykson et al. [12], for the calculation of
y, and y,. Support for this method is given by the behaviour of the rounding
exponent . The quantity M~ is of the order of the size of the neighbourhood
in which the correlation length exceeds the lattice width [28]. This should be
of the same order as the radius of convergence of a power series expansion of
the free energy about the critical point, which will be given by the location of
the nearest branch-point of A;(M;z,). The equality 6§ = y, is thought to be
satisfied in a wide class of systems, particularly in the case of a cylinder with
free boundary conditions at the ends [29].

4 Results

For the zero-field Ising model (¢ = 2) the location of the nearest branch-points
have been obtained exactly [21]. In terms of the angle variable ¢ of the Fisher
circles (1) they are located at ¢ = +v,(M), where, in the limit of large M,
Up(M) ~ 1/M, giving, from the first of equations (6), the correct result y, = 1.



Table 1

Estimates for y, and y, using the finite size scaling formulae (6). The exact values
are given for y, by den Nijs [31] and Black and Emery [32] and for y,, by Neinhuis
et al. [33] and Pearson [34].

Yr Yu
M q=72 q=3 qg=4 q=72 qg=3 q=14
0.984382 1.186760 1.343198 1.96737 1.99611 2.06940
0.990986 1.190734 1.350089 1.93182 1.95150 2.00144
0.994105 1.192738 1.355016 1.91044 1.92423 1.96199
0.995834 1.194065 1.359108 1.89869 1.90877 1.93959
0.996897 1.195037 1.362600 1.89196 1.89954 1.92603
0.997597 1.195775 1.365598 1.88781 1.89357
10 0.998084 1.196350 1.368194
11 0.998436 1.196807 1.370464

© 0 N O Ot =

17 1.87829
Exact 1 1.2 1.5 1.875 1.86 1.875

In general, for the zero-field Potts model in C,, duality in the form

Ai(M; /g€ + 1) = CYA(M;/q¢ ™" + 1), (7)

for all complex ¢, applies to all the eigen-values in A; [27]. Using this result,
it can be shown [21] that on the Potts circle (2), given by ¢ = exp(id), these
eigen-values have the form

Ai(M; /g exp(iv) + 1) = R(9) exp{i[ M9 + w(¥)]}. (8)

When w(?) is real (8) gives a pair of eigen-values defining a connection curve
on the Potts circle, with branch-points located at the solutions of w(9) = 0.
For Ay(M;z,) it must be the case that w(0) = 0 and the nearest branch-
points zx and z; to z° can be determined by following the Potts circle from
the real axis until the imaginary part of In iAl(M; Vaexp(iv) + 1)} differs
from M. Numerical computations are simplified by using the transfer matrix
VW) of the simple Whitney polynomial representation of the Potts model
[30]. For a given lattice width, V("?) has elements continuously parameter-
ized by ¢, but a size independent of ¢. On the real axis V("?) has the same
largest, eigenvalue A;(M; 2,) as V. So the characteristic equation of V("*) con-



tains the whole of the algebraic function of which A;(M; z,) is a branch. This
means that V(W) gives the correct branch-points for A;(M; z;). The domi-
nant eigenvalues were calculated using a variant of the power method with
initial vector (1,1,...,1). This restricts the iteration to eigen-values in the
A1 block of V("?). The branch-points of A;(M;z,) on the Potts circle were
located by finding the point where w () of formula (8) becomes non-zero. The
amplitude of the leading asymptotic term in |z* — z¢| was eliminated between
the expressions for M and M — 1. Results for y, are given in table 1.

The calculations for y,, were carried out with z,, = 2¢ = 1. The corresponding
computations for y, were performed with z, = z{ = ,/g+1. In the C, plane, for
general ¢, the only exact information is the location z¢ = 1 of the critical point.
For ¢ = 2 the branch-points are on the circle |z,| = 1 and, above the critical
temperature, in the limit M — oo they give the Yang-Lee edge singularities
[35]. As may be expected, for general ¢, the structure of the connection curve
for Ay(M;z,) is affected by whether the field is coupled with one or more
states. Results for M = 1 [36] show that, with a field coupled to one state,
the zeros lie on a circle whose radius depends on ¢ and z,. For M > 1 the
connection curve is a single smooth arc which, according to our calculations,
approaches the unit circle for increasing M. The eigen-values in this case were
obtained for ¢ = 2 and ¢ = 3 using V and for ¢ = 4 using the extended
Whitney polynomial method [30]. The method is similar to that for y,. The
estimates for y, are given in table 1.

5 Conclusions

The results of this method show convincing convergence towards the exact
values for ¢ = 2 and ¢ = 3. Using both finite and M x oo lattices Blote and
Nightingale [30] obtained finite size scaling estimates for y, from three-point
fits to the critical heat capacity. These gave ‘best estimates’ of y, = 1, 1.1955,
1.3934 for ¢ = 2, 3,4 respectively. While our results and those of Blote and
Nightingale are comparably close to the exact results for ¢ = 2 and 3, they
show a similar difference for ¢ = 4. In their method this is due to an additional
term in the leading singular behaviour of the heat capacity at ¢ = 4. For
g > 4 the transition is first-order. Blote and Nightingale obtain the power
law behaviour described by discontinuity fixed point exponents for completely
finite systems, but for semi-infinite systems exponential divergence occurs. We
have obtained similar results.

In the case of y,, the quality of our results are again similar to those of Blote
and Nightingale. However, the main aim of our work is not to produce more
accurate values for critical exponents. In the case of the Potts model the exact
values are already known. Our motive is to explore the hypotheses that eigen-



value branch-points have a finite size scaling relationship to the temperature
and field exponents. These branch-points are those of the eigen-value of the
one-dimensional symmetric block which is largest on the positive real axis. We
have, therefore, a particularly simple procedure for obtaining approximations
to critical exponents. The method has also been applied to the quasi-Potts
model of Young and Lavis [37] with encouraging results. In that case no exact
information is available and comparison with other approximation methods is
necessary. This work will be reported in a later communication.

References

[1] Lee T. D. and Yang C. N. Phys. Rev. 87 (1952) 410.

[2] Asano T., Prog. Theor. Phys.40 (1968) 1328.

[3] Suzuki M. and Fisher M.E., J. Math. Phys. 12 (1971) 235.

[4] Newman C. M., Comm. Math. Phys.41 (1975) 1.

[5] Lieb E. H. and Sokal A. D. Comm. Math. Phys.80 (1981) 153.

[6] Martin P. P. and Maillard J. M., J. Phys. A: Math. Gen. 19 (1986) L547.

[7] O'Rourke M. J., Baxter R. J. and Bazhanov V. V., J. Stat. Phys. 78 (1995)
665.

[8] Fisher M. E., Boulder Lectures in Theoretical Physics vol 7 (Boulder: University
of Colorado, 1965).

[9] Jones G.L., J. Math. Phys. 7 (1966) 2000.

[10] Brascamp H. J., and Kunz H. J. Math. Phys. 15 (1974) 65.

[11] Wu F. Y., Rev. Mod. Phys. 54 (1982) 235.

[12] Itzykson C., Pearson R. B. and Zuber J. B., Nucl. Phys. B 220 (1983) 415.

[13] Glasser M.L., Privman V. and Schulman L.S., Phys. Rev. B 35 (1987) 1841.

[14] Marinari E., Nucl. Phys. B 235 (1984) 123.

[15] Kenna R. and Lang C. B., Nucl. Phys. B 393 (1992) 461.

[16] Smith E. R. J. Stat. Phys. 60 (1990) 529.

[17] Wood D. W., J. Phys. A: Math. Gen. 18 (1985) L481.

[18] Wood D. W., J. Phys. A: Math. Gen. 18 (1985) L917.

[19] Martin P. P., J. Phys. A: Math. Gen. 19 (1986) 3267.
20 (

[20] Wood D. W., J. Phys. A: Math. Gen. 1987) 3471.



[21] Wood D. W. | Turnbull R. W. and Ball J. K., J. Phys. A: Math. Gen.

(1987) 3495.
[22] Wood D W and Ball J K J. Stat. Phys. 58 (1990) 599.
[23] Gantmacher F. R., Theory of Matrices (New York: Chelsea,1979).
[24] Privman V. and Fisher M. E., J. Stat. Phys. 33 (1983) 385.
[25] Kaufman B., Phys. Rev. 76 (1949) 1232.
[26] Fisher M.E. and Privman V., Phys. Rev. B 32 (1985) 447.
[27] Mittag L. and Stephen M. J., J. Math. Phys. 12 (1971) 441.
[28] Fisher M. E. and Barber M. N., Phys. Rev. Lett. 28 (1972) 1516.
[29] Fisher M. E. and Ferdinand A. E., Phys. Rev. Lett. 19 (1967) 169.
[30] Blote H. W. J. and Nightingale M. P., Physica A 112 (1982) 405.
31] Den Nijs M. P. M., J. Phys. A: Math. Gen. 12 (1979) 1857.

[32] Black J. L. and Emery V. J., Phys. Rev. B 23 (1981) 429.

18

[33] Nienhuis B., Riedel E. K. and Schick M., J. Phys. A: Math. Gen. 13 (1980)

L189.
[34] Pearson R., Phys. Rev. B 22 (1980) 2579.
[35] Fisher M. E., Phys. Rev. Lett. 40 (1978) 1610.
[36] Glumac Z. and Uzelac K., J. Phys. A: Math. Gen. 27 (1994) 7709.
[37] Young A. P. and Lavis D.A., J. Phys. A: Math. Gen. 12 (1979) 229.



